
Fast quantum algorithms for numerical integrals and
stochastic processes1

Daniel S. Abrams and Colin P. Williams

Quantum Algorithms & Technologies Group (QATG), Section 365
NASA Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109-8099

We discuss quantum algorithms that calculate numerical integrals and de-
scriptive statistics of stochastic processes. With either of two distinct a p
proaches, one obtains an exponential speed increase in comparison to the fastest
known classical deterministic algorithms and a quadratic speed increase in com-
parison to classical Monte Carlo (probabilistic) methods. We derive a simpler
and slightly faster version of Grover's mean algorithm, demonstrate how to apply
quantum counting to the problem, develop some variations of these algorithms,
and show how both (apparently quite different) approaches can be understood
from the same unified framework. Finally, we discuss how the exponential speed
increase appears to (but does not) violate results obtained via the method of
polynomials, from which it is known that a bounded-error quantum algorithm
for computing a total function can be only polynomially more efficient than the
fastest deterministic classical algorithm.

'This work has been supported in part by a NDSEG fellowship, by grant # N00014-95-
1-0975 from the Office of Naval Research, by ARO and DARPA under grant # DAAHOC
96-1-0386 to QUIC, the Quantum Information and Computation initiative, by a DARPA
grant to NMRQC, the Nuclear Magnetic Resonance Quantum Computing initiative, by the
NASA/JPL Center for Integrated Space Microsystems, and by the JPL Information and
Computing Technologies Research Section.

1

1 Introduction
Quantum algorithms have been discovered that can solve rxlany problems faster
than the best known classical algorithms. Most famous are Shor’s factoring
algorithm[l2] and Grover’s searching algorithm[7][8], but quantllrn computers
can also be used to simulate physics with an exponential speedup[l], find means,
and medians with a quadratic speedup [9], and solve a variety of artificial prob-
lems [5][13] exponentially faster than is possible classically. Still, due (perhaps)
to the enormous technical challenges that must be overcome before a useful
quantum computer can ever be built, there is a general sense that more a p
plications must be found in order to justify attempts to construct a quantum
computing device.

We suggest one possible application of a quantum computer, namely, com-
puting the values of integrals. This problem can be solved in a fairly straight-
forward manner via either quantum counting [3], or Grover’s mean estimation
algorithm [9]. Although these algorithms are not new, this application may be
the most useful one described to date. (Because N operations are required to
retrieve N values from a classical database, the mean finding algorithm affords
no speed-up when applied to a pre-existing data set. Indeed, even the original
database search algorithm has only limited utility, because it can only be used to
search a function space, not a true database. It not clear to how many real-life
problems it could be applied [14]). We also show how these apparently different
algorithms can be understood from a unified perspective, thereby explaining
their equivalent computational complexity.

In addition, we suggest that a quantum computer may be used to deter-
mine various characteristics of stochastic processes (for example, stock prices).
Frequently, such processes are used to generation distribution functions, and
one wishes to know the mean, variance, and higher mornents. One can apply
quantum counting and mean estimation to obtain super-classical speedups for
these problems as well.

On a quantum computer, one can find the value of a d-dimensional integral
in 0(1/~) operations, where E is the desired accuracy. It follows from the results
of Nayak and Wu [ll] that this is in fact a lower bound. Classically, one requires
0(1/c2) operations to achieve the same accuracy using probabilistic methods,
and requires 0 (l / c d) - exponentially more - operations to achieve the same
accuracy deterministically. (More precisely, it is polynomial in the accuracy
and exponential in the number of dimensions). Since real computers and all
classical devices are in fact deterministic, this exponential speed increase is by
no means a red herring. Indeed, there is a popular misconception that real
computers can perform probabilistic algorithms with impunity by employing
pseudc-random number generators. Of course, pscudo-random numbers are not
truly random at all - and one must in fact be careful about treating them as
such. For example, in 1992 Ferrenberg et al. found bugs in a supposedly good
pseudo-random number generator when a numerical simulation of an Ising spin
system failed due to hidden correlations in the rando on^" numbers [6]. The
moral herc is that one cannot rely upon a classical computing device to properly

2

cxcclltc a probabilistic algorithrn. In somc (more than merely technical) sense,
thc qt1antuIn algorithm for cvaluating intcgrals provides an cxponcntial speed
increase.

The rest of this paper is organized as follows: first, we formalize the prob-
lems and discuss the relevant classical algorithms. We then review Grover’s
search algorithm from the more general perspective of amplitude amplification.
We describe two different approaches to mean estimation, one using amplitude
amplification and the other quantum counting, and provide a new, simpler, and
slightly faster version of the former algorithm. We discuss some variations of
these algorithms and show how they are essentially the same. Finally, we con-
clude with a discussion of the lower bounds set by the method of polynomials,
and explain why they must be applied with greater care than one might first
suppose.

2 Statement of the problem and classical algo-
rit hms

Without loss of generality, we consider integrals of a real-valued d-dimensional
function g(zl ,52, ... z d) defined for zi in the range [o, I] and where g(zl ,52, ... Zd) E
[0,1], for all values of x i . Thus we seek to calculate

I = l1 1’ ... l ’g(51,52, ... 5d)dXldZ~ ... dXd (1)

In the discussion that follows, we shall approximate g with a real-valued d-
dimensional function f(a1, a2, ... a d) defined over integral values ai in the range
[l, hf] and where

Thus, we wish to find the sum

Note that the sum S is identical to the average of f over all a,. The accuracy
with which the sum S approaches the integral I is obviously determined by the
density of points M in each variable and the shape of the particular function.
However2, in what follows, our sole concern will be with approximating the sum
S.

aBecause the computational complexity of the quantum algorithms (and also the classical
Monte Carlo algorithms, for that matter) depend only logarithmically on M , this approxima-
tion is not a limiting factor (as long as the function is not pathological).

3

A sum of this form can also be used to dcterminc properties of a stoclmstic
process. We describe a stochastic process by a scquencc of values, 1 1 1 1 , wp, ..., W N ,
where each value 7ui is chosen randomly from a distribution which may depend
on some (or all) wj for j < i . For example, a simple one dimensional random
walk might be described by a sequence for which each wi is either (w,-1+ 1) or
(wi-1 - 1) with equal probability. Often, one is interested in a property of such
a sequence that can be represented as a function v(w1, w2, ..., W N) . (In many
cases, the function v may depend only upon the final value . O N) . One wishes
to determine the mean, variance, skewness, and possibly higher moments of
the function v over the space of all possible sequences. This problem is easily
transformed into the form (1) through a change of variables: write each w, as a
function wi(r,, w1, w2, ..., w i - ~) , where ri is a random variable in the range [0,1].
Then we can write v as a function v(q ,r2 , ..., r ~) of the independent random
variables r, , scale the output so that it fits within the desired range, and we
have a function in the form g above. The mean value of the stochastic process is
then simply the integral (1). Once again, we represent the integral as a discrete
sum. (For some stochastic processes, the problem may in fact be discrete from
the beginning). Thus the problem again reduces to finding the sum S in (3).

One can find higher moments of a stochastic process by simply applying the
above approach to a calculation of the mean of v2 , v3 , etc. This method can of
course also be applied to calculate moments of any distribution function (even
if it is not the result of a stochastic process) as long as it can be represented in
closed form.

It should be intuitively obvious that without any knowledge of the function f ,
one requires classically O (M d) operations to evaluate the sum. More precisely,
if we view f as an oracle (or “black-box”), then one requires at least M d / 2
queries to determine S to within k i . (This is because it is possible that the
remaining M d / 2 unqueried function values may be either all 0’s or all l’s, one
of which will always shift the mean by at least i). It follows that an ordinary
classical Turing machine requires exponentially many operations to determine
S with accuracy E for any E < a .

However, if one is allowed to employ a probabilistic algorithm, then one can
randomly sample values of the function f for various d l , a2, ... ad; as long as the
values of ai are chosen randomly (and provided that you are not exceedingly un-
lucky), it is possible to quickly approximate S to any desired precision. Indeed,
it is a straightforward consequence of the central limit theorem that one can
determine S with accuracy E (with bounded probability) using only O(1/ E ’)

operations. Note that the number of trials does not depend at all upon the size
of the function’s domain - as it did in the deterministic case - but only on the
desired accuracy. This is in fact how Monte Carlo integrals are computed, and is
essentially the only practical way to calculate integrals of functions with high di-
mensionality. (It is also why we are not concerned with the approximation of the
integral I with the sum S - one can make hf essentially as large as one desires,
paying only a logarithmic cost in computational complexity). Unfortunately,
Monte Carlo integrals on classical devices require the use of a pseudo-random
number generator, and LS mentioned previously, thcrc is no guarantee that one

4

will obtain "good" random nllrnbers. Onc obviolls way to solvc this dilernrna
would be to use a simple quantunl event to prodrm! a string of truly randon1
numbers; but once one introduces quantum Incchanics into the problem, we can
find an even more effective solution.

3 Principle of Amplitude Amplification
Both of the quantum algorithms discussed in this paper require a generalized
version of Grover searching. The treatment below follows that of Grover [9];
similar ideas have also been described by Brassard et. al. [3] and various
others.

All quantum algorithms consist of unitary operations applied in series. Any
sequence of unitary operations can be viewed as a single unitary operator. Con-
sider a particular unitary operator U which has amplitude Ut, between a start-
ing state Is) and a target state It). If the computer is initially in the state Is),
then after one application of U the computer will be found in the state It) with
amplitude Ut,, and if the state of the computer is measured in the canonical
basis, the probability of obtaining the state it) will therefore be IUtSl2. We seek
to a m p l i f y the amplitude of the state It). (Increasing the amplitude of this
state increases the chances that it will be found upon measurement and thereby
allows for fast searching).

Amplitude amplification in its simplest form requires the inversion operator
I , which inverts the phase of the state 1.). We compose the unitary operators
I and U to form the unitary operator G in the following way:.

G = -ISU-'ItU (4)

It can be easily verified that the operator G leaves invariant the subspace
spanned by Is) and U"lt). In particular, one finds that

G (~1s) + /"U"It)) = { (1 - 4 IUtSl2)cy + 2UtsP} I S) + {-2U,',a: + P } U"(t)
(5)

which is approximately a rotation by 2 juts[radians. I t follows that by applying
0(1/ IUtsl) iterations, one can obtain the state U" It) with near certainty.

The original fast searching algorithm [8] applies the above steps with U = W ,
where I.V is the Walsh-Hadarnard transform - that is, a 7~/2 rotation of each
qubit. If the initial state Is) = 100 ... 0), then lUtsl = lWtsl = 1 / 0 for all
possible target states It). The unitary operation It selectively inverts the phase
of the actual target state It) for which we are searching. After one application
of W, the probability of measuring It) would be only &, the same as one would
obtain classically by guessing. However, it follows immediately from the above
that the amplitude It) can be amplified t o nearly 1 by applying only O(*)
operations.

5

4 Integrals via Amplitude Amplification
To evaluate the integral I in (1) (or alternatively the sum S in (3)), one can
use the mean estimation algorithm described by Grover in (91. We provide
a simpler variation on this algorithm, which distills the essential features from
the original algorithm, but eliminates unnecessary unitary operations and qubits
while retaining the essentials of the approach.

The algorithm works by refining a series of approximations. One can obtain
an intuitive understanding of the approach by employing an analogy to classical
coin-flipping: although it is tricky to describe, the algorithm is actually quite
simple in practice. Consider a coin, which, when tossed, comes up heads with
probability pl = S. By the central limit theorem, one can determine S with
accuracy 6 using 0(1/ 6’) trials. Let us call the first estimate so obtained El
and the error 61. Then with high probability E1 - 6/2 < p l < El + 6/2. We
now wish to “zoom in” on this interval and determine S more accurately within
these bounds. We thus define the difference D 1 = S - (El - 6/2), that is, the
distance that S is from the bottom of the interval. Thus with high probability
Dl is bounded by 0 and 6. We “zoom in” by rescaling this value so that it is
bounded by [0,1] and call this value p2 , that is p2 = D1/6.

We now imagine a second iteration, where we are provided with a second
coin which lands heads with probability p2. Of course, one could not actually
make such a coin without knowing S ahead of time, which would defeat the
purpose. However, in the analogous quantum problem it will be possible, so we
shall imagine that someone can in fact provide for us the coin with probability
p 2 . As with p l , one can determine p2 with accuracy 6 using 0(1/ 6’) trials.
Call this estimate Ea; then E 2 - 6/2 < p2 < E 2 + 6/2 with high probability.
However, because p2 = D1/6, an estimate of p2 with accuracy 6 is an estimate
of Dl with accuracy b2. Since S = D 1 + (El - 6/2), we thus obtain an estimate
of S to accuracy S2.

We continue this process with further iterations. Let D2 = S - (El - 6/2) -
(E2 - 6/2)6, which is evidently bounded by [0, b 2] ; we define p3 by rescaling
D2: that is, p3 = D2/6’, which is bounded by [0, 11. We imagine a third coin
with probability of heads p3 and determine this probability to accuracy 6 using
0(1/ 6’) trials, as before. But since p3 = D2/b2, this implies an estimate of
D2 to accuracy b3, which implies an estimate of S to accuracy b3. We then let
0 3 = S - (El - 6/2) - (E 2 - 6/2)6 - (E3 - 6 / 2) h 2 , etc. Each iteration requires
the same number of coin tosses, but improves our estimate by a factor of 6.
With O(n/ S2) tosses, we estimate S with accuracy 6”. Phrased differently, the
required number of coin tosses scales only as the log of the desired accuracy.
However, let us reiterate that this classical algorithm could not actually be
used in practice; it is discussed only to serve as an analogy to the quantum
algorithm, described below. It highlights the fact that the final complexity of
the algorithm will not be limited by the number of trials (which we have seen is
only logarithmic in the desired accuracy), but by the fact that 0(1/ E) quantum
logic operations arc required to prepare the final coin-like-state (that reveals S
to accllracy e) .

Wc will now describe thc quantum algorithm. Let E be the cllrrcnt best
cstirnate for S; that is

E = (El - 6/2) + (E2 - 6/2)6 + (E3 - 6 / 2) b 2 + ... + (Ek - 6/2)6"" (6)

As before, let D = S - E . We wish to obtain an estimate for D with accuracy
bk . To begin, we define a new function f' = f - E. Recall that

D = S - E (7)

1 . "-l - "

M d
f '(a1 7 a2 , * - - a d) (9)

al ,a2 , ... ad=O

In other words, D is the average value of f ' . The essential quantum part of
the algorithm is to estimate the average value of f ' ; from this, we will simply
iterate to obtain finer estimates. To calculate the average, consider a quantum
computer with dlog, &I + 1 qubits. Label the states Ir)lal,a2, ... a d) where the
first qubit r is a work qubit and the remaining qubits indicate a value in the
domain o f f . The computer is placed initially in the zero state: l0)100 0). We
begin by applying a Walsh-Hadamard transform to the function qubits in order
to obtain an equal superposition of all possible values for the ai:

M-1

Next we rotate the first qubit by an amount f'. The state is then

(11)

Finally, we perform the inverse of the Walsh-Hadamard transform used in the
first step. It is easy to see that the amplitude of the state 11)lOO ...O) will then be
D (because each state Il) lal , u2, ... a d) contributes amplitude f ' (a1, a2, ... ad)
to the state 11)lOO ... 0)). An estimate for D can therefore be obtained by making
measurements of the state of the system in repeated trials, and counting the
frequency of the result 11)lOO ... 0). To obtain an accuracy e requires 0(1/ e2)
measurements.

However, we can use amplitude amplification to increase the accuracy of our
estimate. The steps described above can be viewed as a single unitary operation
U that has amplitude lUtsl between the starting state Is) = l0)lOO ... 0) and the
target state It) = l l) \ O O ... 0). It follows that one can use amplitudc amplification
to increase the probability of measuring the state 11) 100 ..A)). By performing only

M

7

O (N) oporat,ions, one can incrcase thc arrlplitutle of It) t,o N * D. Thc largest
value orlo can choosc for N is O (l / h k) (because thc magnitutlc of D is O (@)
and the norm of the amplified amplitude is bounded by one). In this case, the
probability amplitude for the target state is then roughly D/bk3 . Borrowing
from our earlier classical analogy, this is the scaled (“zoomed-in”) value p k + l .

With the same O(1/ e 2) trials, we thus determine pk+lwith accuracy E , but this
provides an estimate of D with accuracy E* = E / N = €6‘. If we vary N and fix
E , we perform only O(1 / ~ *) operations to find D with accuracy E * .

Because of the limit on the size N , the algorithm requires several iterations.
Initially, D may be any value between 0 and 1, and hence N can be at most
1. (That is, we cannot use amplitude amplification at all). As the estimates
become more accurate, then. the value of D becomes correspondingly smaller,
and one can choose larger and larger N .

Just as in the classical case, each estimate p k is determined with a fixed
number of trials, but since the corresponding estimates of D (and S) become ex-
ponentially more accurate with each iteration, the total number of trials is only a
logarithmic function of the desired accuracy. Hence, the significant contribution
to the computational complexity is not the number of trials. Instead, the com-
plexity is determined by the amplitude amplification. Within a polylogarithmic
factor, the entire cost of the algorithm occurs on the last iteration (because each
iteration takes exponentially more time). The computational complexity of the
entire algorithm is therefore the same as the amplitude amplification of the last
iteration: 0(1/ E *) operations are required, where E* is the desired accuracy.

It is interesting to note that, as with the classical Monte Carlo method,
the quantum algorithm depends only upon the desired accuracy: the size of the
function’s domain (M d) is irrelevant.

5 Integrals via Quantum Counting
There is another algorithm which can be used to evaluate the sum S in (3),
based upon the idea of quantum counting [3]. To use this method, one must first
convert the real-valued function f (a l , a2 , ... a d) into a boolean valued function.
This is accomplished via the addition of an extra parameter q. The parameter
takes on integral values in the range [l,Q] where Q is determined by the desired
accuracy. We then define

In other words, for a given a l , a2, ... ad,thc fraction of the Q values for which
b(a1, a?, ... a d , q) = 1 is the best approximation to f (a 1 , an, ... a d) . It follows that
the average value of b is identical to the average value of f . However, since
6 is a boolean-valued function, one can estimate the average value of 6 via

3Because the amplitude amplification process is not exactly linear, the final amplitude is
not exactly D/lik. However, this difference can be easily accounted for and has no effect on
the computational complexity of the algorithm.

approxirrlate counting. That is, S = (6) = +-, wlwre T is the nurnbcr of
solutions D(a1, nz, ... a d , q) = 1. To count the number of solut,ions T , we recall
that during the amplitude amplification process, the state of the system rotates
within the subspace spanned by Is) and U"lt) a t a rate which is proportional
to lUt31. Moreover, we recall that by using the Walsh-Hadamard transform
for U (a s in the Grover search algorithm), the magnitude of Ut, is exactly
[Ut,(= lWtsl = 1/a for any given target state 1 2) . But if the target state is a
sum over all basis vectors for which b(i) = 1, that is, It) = 1 l i) , then the

amplitude of [Utsi = m. Hence the amplitudes of the states Is) and U - l l t)
will oscillate with a frequency that depends on T . It is therefore a simple matter
to create a superposition

M Q

i € b (i) = l

. A-1

and determine the value of T by performing a fast Fourier transform on the first
register. The accuracy 1/A will depend linearly upon the number of points used
in the FFT, as will the number of quantum logic operations (because it takes
0(1) operations to perform G, one requires O (A) operations to create the state
I*) above). It follows that one can determine the value of the integral f to
accuracy 6 with O (~ / E) operations, as in the previous algorithm. Also as above,
we find that the number of operations does not depend upon the size of the
domain of f , but only upon the desired accuracy.

6 Discussion
At first, it may appear surprising that these two very different quantum al-
gorithms should both require O(l/6) operations. However, by exploring some
variations of these algorithms, we find that, while not identical, they are both
quite similar.

First, we note that there is a trivial variation of quantum counting, which
is simply to measure the state of the system in repeated trials, and count the
number of times one obtains the target state (or more precisely, a state for
which b(a l ,a z , ... a d , q) = 1.) That is, we determine the fraction & = (b) = S
through random sampling. This technique is directly analogous to the way,
in Grover mean estimation, we find the probability p1 through repeated trials
(counting the number of times we measure the target state 11)lOO ... 0)). In both
cases, 0 (l / c 2) operations would be required to obtain an accuracy E. The
difference is that using the Grover method, one can subtract the most recent
estimate from each term in the sum (to obtain the function f'), and then pcrform
amplitude amplification to increase the probability of obtaining the target state.
By amplifying this difference, the precision of the algorithm is limited by the
(marly) linear amplitude amplification process rather than by the quadratic
sampling process. In the case of quanturn counting, onc can also apply the

9

artlplitodc amplification process to thc target statc (indeed, this is t>xa(:tly what
the quantum counting algorithm ctocs). However, one cannot sllbtratct the most
recent estimate from each tern1 in the sum: specifically, for a given (1 1 ~ ~ 2 , ... a d ,
there can be no less than zero values of q for which b(a1, u2, ... a d , q) = 1. In the
Grover method, individual terms in the sum may be negative, even though the
sum of all the terms is always positive. The counting method does not allow this
possibility. I t is therefore impossible to use the technique of iterated, refined
estimates to increase the precision of the approximation.

The relationship can be viewed from another perspective by considering a
variation of Grover's method. As presented earlier, the technique depends upon
measuring the amplitude of the target state 11)100 ... 0). This is accomplished
through repeated measurements. However, one can also determine this ampli-
tude with a quantum FFT. Recalling once again that during the amplitude am-
plification process the state of the system rotates within the subspace spanned
by Is) and U"lt), at a rate which is proportional to [Ut,/ (which in this case
is equal to p k) , we see that one could also use an FFT to determine lUtsl (and
therefore p k) . As in the case of quantum counting, one requires 0(1/€) opera-
tions to obtain the result with accuracy €. Moreover, because the FFT measures
the frequency of the rotation, one does not need to perform the iterated esti-
mates (which previously ensured that the initial amplitude IUt,/ was sufficiently
small that it would in fact be amplified throughout the entire process).

The situation is in many ways similar to the relationship between Shor's
algorithm and Kitaev's algorithm[lO]. In the Kitaev algorithm, one estimates
the phase of an eigenvalue 4 of a unitary operator U . The number of operations
required to estimate q5 grows polynomially with the d_esir_ed precision, but Kitaev
obtains exponential precision by considering U 2 , U4, UB,etc. This process is
analogous to the refined estimates used in the Grover method. In [4], Cleve
et. al. describe how to modify Kitaev's algorithm so that it uses an FFT to
estimate the phase. The resulting algorithm is then identical to Shor's.

A final variation of these mean finding algorithms arises naturally from the
following considerations*. In (our version of) the Grover algorithm, we apply
the unitary operators W"RW, where W is the Walsh-Hadamard transforma-
tion and R is the rotation by f' (which maps I Q l) t o (Q2) in the previous
description). The three unitary operators W-lRW take the initial zero state
into a target state with an amplitude proportional to D , the number we seek
to estimate. In the quantum counting algorithm, we begin with the zero state,
and apply only the operator W to obtain a (different) target state, also with
an amplitude that is proportional to the (square root of the) number we wish
to estimate. In the final variation, we apply the operators RW: that is, we
leave out the final inverse Walsh-Hadarnard, and (to compensate) use a slightly
different rotation 5. Because it is the rotation R that shifts the amplitude ac-
cording to the function we are trying to estimate, the final W is in some sense
an extra, unnecessary step. However, if we use the original rotation R from the
rrloclified Grover algorithm and consider the target statc to be all those states

h

h

4This last variation on quantum counting was suggested by Peter Hoyer.

10

where thc first qubit is 11), the amplitude of the targct state would then be pro-
portional to the SUIII (or ruean) of all valucs of f squared - which is not quite
what we desire. Hence we simply perform a modified rotation 2. which rotates
by f i , in which case the target state will occur with probability proportional
to the sum of all values of f l squared, i.e., to the mean of f . By repeated
iterations of this process, we can perform an FFT (as in quantum counting) and
determine the mean of f with the same linear scaling that we obtain with the
other approaches.

It is worth noticing that in this last variation, as with the original quantum
counting, one cannot use the method of iterated estimates (like we did in the
original Grover technique) because - once again - it is not possible to account
for negative values of f’. It is also interesting to compare this method with the
original algorithms and ask why we need to introduce the square root? With
respect to the original Grover technique, this is because of the difference between
summing and then squaring (as we do in the original algorithm) and squaring
and then summing (which we do in the later algorithm). However, in the case
of quantum counting, the amplitude of the final state is determined by squaring
and then summing as well. But since the original quantum counting applies to
boolean values, all components of the superposition occur with equal weight,
and the result is the same.

The algorithms described above are summarized by the following chart:

11

Is)

lO)(OO 0)

10)100 0)

100 0,O)

100 0,O)

(O)(OO 0)

It)

~ 1) ~ O O 0)

p)loo 0)

c 1 2)
i E b (i) = l

U IUt,l Method Complexity

Sampling with
W"RW iterated estimates W / E)

W Sampling
JIF (no iterated estimates) O(1lE2>

M-1 c m) l a I , a 2 , - 4 EW (no iterated estimates) 0 (1 / E 2)
JS Sampling

a,=O

We see, therefore that the two apparently distinct algorithms are in fact both
very closely related. In both cases, we perform a sequence of unitary operations
that generate an operator with amplitude lUt31 to make a transition from the
10) state to the target state It), where the value of juts[depends directly on the
sum S. In both cases, we can use a quantum FFT to estimate the value of
lUt,l and approximate S with accuracy 6 in 0 (1 / E) operations. In both cases,
we can estimate the value of (Utsl directly through repeated measurements and
then approximate S with accuracy E in 0(1/ e2) operations. The only difference
is that in Grover's method, the particular form of the operator U allows one
to consider negative values f', which in turn allows one to use the process
of iterated, refined estimates and thus to obtain linear precision directly with
repeated measurements instead of with the fast Fourier transform.

7 Conclusion
To briefly summarize: we have proposed two new applications for quantum com-
putation: evaluating integrals and calculating descriptive statistics of stochastic
process. Whereas 0(Md) operations are required on a classical deterministic
Turing machine, and 0(1/ e 2) operations are required with a classical proba-
bilistic algorithm, one can obtain the same accuracy on a quantum computer

12

with only 0(1/ 6) quanturn operations, usirlg two diff(:rorlt algorithms. \V(. have
provided a simpler (and slightly more cfficicrlt) version of Grover’s IIwatn-fintIing
algorithm, demonstrated how quanturn counting can be applied to rrlean esti-
mation, derived some variations of both algorithms, and shown how the two are
very closely related.

In concluding, we would like to make two points. The first is that, while
these algorithms are probabilistic in nature, the mean estimation algorithms
employing FFTs do not rely upon sampling the function space, as do classical
Monte Carlo methods. The quantum algorithms in some sense consider the
entire (exponentially large) domain of the function all in one shot, and, with
high probability, return the mean to within the desired accuracy.

Second, it is interesting to consider our results in light of the work by Beals
et. al. [2] , where it is proven (using the method of polynomials) that a bounded-
error quantum algorithm for computing a total function can be only polynomi-
ally more efficient than the fastest deterministic classical algorithm. A boolean
function b(al,a2, ... ad, q) such as the one described in Section 5 can be described
as a sequence of hfdq boolean values; the average of b is a function of those M d q
boolean values, and it is a total function, since it is well-defined for all possible
input functions b. In order to phrase mean-estimation as a decision problem, we
can ask: “Is the average value of b within the range [E- E , E+ E] ?” (for some
chosen E and 6) . Naively, it appears that the results of [2] would imply that this
problem cannot be speed up more than polynomially on a quantum computer
(vs. a classical deterministic computer) - whereas we have just finished demon-
strating an exponential separation. It appears that there is a contradiction.’

The (in fact quite simple) resolution of this problem is that the decision
question posed above does not quite correspond to mean-estimation. According
to the question given, a function with mean just slightly (infinitesimally) more
than E+ E does not have a mean that is approximately E , whereas a function
that has mean exactly E+ E does. Of course, our quantum algorithms cannot
reliably differentiate between these two cases in polynomial time any better than
the classical deterministic algorithms can. The decision question that one can
associate with mean-estimation would be a probabilistic one; the answer should
be sometimes yes and sometimes no with a probability that depends (perhaps
as a gaussian function) upon the distance the true mean is from the estimate
E. Such a question is not a function (although it can be viewed as the average
value of a weighted ensemble of functions). Thus, the results obtained in [2] do
not apply to our problem, and there is no contradiction.

In concluding therefore the authors would like to make the following point.
It is easy for results such as those in [2] to cause one to be dishcartcned about the
prospects of quantum computing. However, sometimes the “real” problems we
wish to solve have special properties that can make them easier than the general
cases. Calculating approxirrlate integrals is one such exarrlple - and there are
likely others waiting to be discovered.

5Actually, this issue applies equally to the exponential separation between the classical
deterministic and probabilistic algorithms.

13

8 Acknowledgments
D.S.A. gratefully acknowledges support from a NDSEG fellowship and from
NASA-JPL, and helpful conversations with Peter Hoyer. Portions of this re-
search were supported by grant # N00014-95-1-0975 from the Office of Naval
Research, by ARO and DARPA under grant # DAAH04-96-1-0386 to QUIC,
the Quantum Information and Computation initiative, by a DARPA grant to
NMRQC, the Nuclear Magnetic Resonance Quantum Computing initiative, by
the NASA/JPL Center for Integrated Space Microsystems, and by the JPL
Information and Computing Technologies Research Section.

14

References
[l] D.S. Abrarns and S. Lloyd, sub. to Phys. Rev. Lett., quant-ph/9807070

(21 R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf, in Proceedings of
the 39th Annual Symposium on Foundations of Computer Science (1998)

[3] G. Brassard, P. Hoyer, A. Tapp, quant-ph/9805082

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Moxa, Proc. R. SOC. Lond. A 454
(1998), pp. 339-354

[5] D. Deutsch and R. Jozsa, Proc. R. SOC. Lond. A 439, 553 (1992)

[6] A. M. Ferrenberg and D.* P. Landau, Phys. Rev. Lett. 69,23 (1992) pp3382-
3384

[7] L.K. Grover, Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, p. 661, 212-19

[8] L.K. Grover, Phys. Rev. Lett. 79, 325-328 (1997)

[9] L.K. Grover, quant-ph/9711043

[lo] A. Yu. Kitaev, quant-ph/9511026

[ll] A. Nayak and F. Wu., quant-ph/9804066

[12] P. Shor, in Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los
Alamitos, CA, 1994), p.124

(131 D. Simon, Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, edited by S. Goldwasser (IEEE Computer Society, LOS
Alamitos, CA, 1994), p.116

[14] C. Zalka, quant-ph/9901068

15

